Divide and Conquer (1)

• Take a problem ‘X’
 – Subdivide in subproblems of equal type
 • Input, output domain, etc partitioning
 • Subproblems are independent of each other
 – Solve the subproblems
 • Recursively
 • sequentially
 – Combine subproblems’ solutions
 • Wait for all subproblems to complete?
Divide and Conquer (2)

• Also known as ``recursive decomposition``
• Top down reasoning:
 – split large jobs into smaller jobs until so small that it can be best solved sequentially.
 – merge results to solve the bigger task which in turn can be used to solve the next larger task.
• Take a recursive program
 – I.S.O. recursive calls, create parallel tasks
 – when result needed, wait for subtask to finish
Divide and Conquer (3)

• Communication only occurs when
 – Spawning a new task
 – Gathering/reducing results

• pro: no dependence in program on
 – the number of processors used
 – network topology
 – scheduling

• con: hard to tune algorithms by hand as hardly anything to tune.
Complexity….

• Say we have an D&C alg with a branch out of ‘2’
 – 2 subproblems are solved recursively
 – Seq. time alg(N) = time alg(N/2) + time alg(N/2)
 – Par. Time alg(N) = time alg(N/2)
 – In real life:
 • par. time alg(N) = approx of time alg(smallest granularity)
 • Neglect time needed to traverse the binary tree
Example: fibonacci numbers (1)

\[
\text{fib}(n) = \begin{cases}
N & \text{if } N < 2 \\
\text{fib}(n-1) + \text{fib}(n-2), & \text{otherwise}
\end{cases}
\]

\[
\text{fib}(n) = (n < 2) \ ? \ n : \text{fib}(n - 1) + \text{fib}(n - 2)
\]

```c
long sequential_fib(long n) {
    if(n < 2) return n;
    long x = fib(n-1);
    long y = fib(n-2);
    return x + y;
}
```
Example: fibonacci numbers (2)

\[\text{fib}(n) = (n < 2) \ ? \ n : \text{fib}(n - 1) + \text{fib}(n - 2) \]

```c
long parallel_fib(long n) {
    if(n < 2) return n;
    long x = spawn task fib(n-1);
    long y = spawn task fib(n-2);
    \<wait for sub tasks\>
    return x + y;
}
```
Example: Fibonacci Numbers (3)

• optimization: more sequential execution to make tasks more coarse grained.
 – How to choose CUT_OFF?

```c
long parallel_fib(long n) {
    if(n < CUT_OFF) return sequential_fib(n);
    long x = spawn fib(n-1);
    long y = spawn fib(n-2);
    <wait for sub tasks>
    return x + y;
}
```
Prime Factorization

• Given non-prime X
 – $X = (A \times P_0) \times (B \times P_1) \times \ldots$
 – What values of primes A, P0, B, P1,\ldots?
 – What is the shortest prime product?

• Example
 – $14 = 2 \times 7$ (2 = prime, 7 = prime)
 – $12513442 = \square$

• Ps, used in some optimizing compilers to implement fast multiplies by constants
Prime Factorization

• Splits a number N into its prime factors
 – recursively split the search space
 • Start with splitting the range 2..N in two
 • Split the search space until it has a certain number of threshold numbers.

• Then, each of these numbers is tested
 – if it is a prime, it is decided if it is a factor of N and if so, how many times
Prime Factorization

// returns a set of factorizations
prim_fac(N, min, max) {
 if ((max – min) < THRESHOLD) {
 for i = min .. max:
 if (n % i) == 0: // i divides perfectly
 if prime(i):
 NN = N;
 F = 0
 while NN % i == 0:
 NN /= i;
 F++;
 set = set + {F times factor i}
 return set;
 } else {
 mid = (max + min) / 2;
 ret1 = spawn prim_fac(N, min, min + mid)
 ret2 = spawn prim_fac(N, min + mid + 1, max)
 sync
 return set{ret1} combined with set{ret2};
 }
}

// execution starts here:
factorize(N) {
 prim_fac(N, 2, N)
}

N=100

i=2
-> 100 % 2 == 0
NN = 100/2 = 50
F = 1

NN= 50 % 2 == 0
F = 2

NN = 25 % 2 = 1
-> stop

I = 5:
 100 % 5 = 0
 NN = 100/5 = 20
 F = 1

NN=20/5=4
F = 2

Set = (2^2) * (5^2)
When to stop dividing?

- granularity
 - how much parallel?
 - how much sequential?
 - smaller granularity
 - more communication but better load balancing...
 - More overhead
 - Sub task administration
 - Method call overheads
Example: Binary Search (1)

// A sorted table. The table is sorted on ‘keys’
// using the KeyTyper.smaller_than() method
KeyType keys[];
ValueType values[];

ValueType binary_search(KeyType key, int start, int end)
{
 int middle := (start+end)/2;

 if (keys[middle].equals(key))
 return value[middle];
 else (keys[middle].smaller_than(key))
 return binary_search(left, start, middle-1);
 else
 return binary_search(key, middle+1, end);
}

Example: Binary Search (2)

• Any ideas on how to parallelize?
 – Spawning recursive iterations won’t help
Example: Binary Search (3)

- When spawning job [0..n/2]
 - Spawn parallel jobs [0..n/4] and [n/4...n/2]

```c++
ValueType binary_search(KeyType key, int start, int end)
{
    int middle := (start+end)/2;
    if (keys[middle].equals(key))
        return value[middle];
    else if (keys[middle].smaller_than(key))
        return parallel
            binary_search(X, start, (start+middle-1)/2)
            binary_search(X, (start+middle-1)/2, middle-1)
        else return parallel
            binary_search(key, middle+1, (middle+1+end)/2);
            binary_search(key, (middle+1+end)/2, end);
}
```
Example: Heap Sort (1)

- heap = balanced binary tree with value at any node smaller than that of its children
Example: Heap Sort (2)

Sequential_heap_sort(unordered set of numbers L)
{
 Heap H = new Heap(L);
 List X = new List();
 while (H not empty)
 {
 P = remove lowest number from H;
 // note: lowest number = top of the tree
 X += P;
 }
 return X
}
Example: Heap Sort (3)

• Sequential Heap construction:

```java
BinaryTree t = new BinaryTree();

For each number in list:
    find a good spot to insert element
```
Example: Heap Sort (4)

- Parallel_heap_sort(List L)
 BalancedUnsortedBinaryTree T(L);
 Heapify(T)
Example: Heap Sort (4)

Heapify(Tree T)
if T == empty
 return;
heapify(T.left);
heapify(T.right);
if (left.value < T.value)
 swap_data(left, T);
if (right.value < T.value)
 swap_data(right, T);
Example: Raytracer (1)

• For each pixel on the screen
 – Color[x,y] = render_pixel()

• Some pixels take longer to compute than others

• Pixels are independent
Example: Raytracer (2)

```c
void render_screen(int width, int height) {
    for (int x=0; x<width; x++)
        for (int y=0; y<height; y++) {
            Color color = render(x, y);
            screen.plot_pixel(x, y, color);
        }
}
```
Example: Raytracer (3)

```c
void render_screen_rectangle(rectangle r) {

    if (r.is_large()) {
        render_screen_rectangle(r.upper_left());
        render_screen_rectangle(r.upper_right());
        render_screen_rectangle(r.lower_left());
        render_screen_rectangle(r.lower_right());
        return;
    }

    for (int x=r.x; x<r.width;x++)
        for (int y=r.z; y<r.height;y++) {
            Color color = render(x,y);
            screen.plot_pixel(x, y, color);
        }
}
```
Dynamic Programming (DP) (0)

• Solve a problem recursively
 (Just like divide and conquer)
• Before recomputing a subproblem
 – See if you’ve already computed it
 • Return ‘cached’ answer
 – Recompute otherwise
Dynamic Programming (DP) (1)

• DP = recursion with memory
• where divide and conquer has no dependencies between tasks, dynamic programming assumes that there is
• bottom up reasoning I.S.O. top down reasoning.
 – solve smallest tasks first and record results.
 – try and solve next larger task and record result
 – goto 2 while not found solution.
Dynamic Programming (2)

- tasks that have already been computed are assumed to return the same value on another invocation
- solving the next bigger task can be viewed as combining sub-results using a function:

 \[
 \text{result} = f(s(i1), s(i2) \ldots s(in))
 \]

 » monadic combining functions: contain 1 's' in f(\ldots)
 » polydicyc combining functions: contain >1 's' in f(\ldots)
 F(a(i1),b(i2), c(i2), etc)

• work can be represented in a directed graph.
• serial DP formulation: depend only on tasks that are one level deeper in graph
• DP requires communication to store intermediate results where simple div&conquer requires none.
Dynamic Programming (3)

// parallel fib with dynamic programming
long cached_value[] = {-1, -1, -1, etc};

public long fib(long n) {
 if(n < 2) return n;
 long x = spawn dp_fib(n-1);
 long y = spawn dp_fib(n-2);
 sync();
 return x + y;
}

long dp_fib(long n) {
 if (cached_value[n] != -1)
 return cached_value[n];
 else
 cached_value[n] = fib(n);
 return cached_value[n];
}
Dynamic Programming (4)

• Knapsack problem:
 – given items 'i' of weight \(w(i) \) and profit \(p(i) \), try to fit as many objects in knapsack of capacity \(c \) while maximizing profit.
 – solution vector = \((0/1)^*\), where 0 if not in sack, 1 if in sack.
 – \(F(i, x) = \) max profit solution for \(i \) objects in sack with \(x \) capacity
 • DP solution = 0 if \(x \geq 0, i=0 \)
 • -\(\infty \) if \(x < 0, i=0 \)
 • \(\max(F(i-1,x), F(i-1,x-w(i)) + p(i)) \) if \(1 < i \leq n \)
 – parallel:
 • \(F(i-1,x) \) can be computed on another machine in parallel to \(F(i-1,x-w(i)) \)
 • results of computations on other machines can be broadcast
Knapsack problem (1)

<table>
<thead>
<tr>
<th>Item</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Weight</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Knapsack can hold 15 kilos
- try and put as many objects in the knapsack as possible
Knapsack problem (2)

Solution knapsack(int bitvector, int item) {
 if (weight(bitvector) > capacity) return INF;
 if (item == max_item) return new Solution(bitvector);
 // put item in knapsack
 int bit_vector1 = bitvector | (1<<item);
 // don’t put item in knapsack
 int bit_vector2 = bitvector;

 Solution s1 = knapsack(bitvector1, item+1);
 Solution s2 = knapsack(bitvector2, item+1);

 if better(s1, s2) return s1
 else return s2;
}
Knapsack problem (3)

Solution knapsack(int bitvector, int item) {
 if (weight(bitvector) > capacity) return INF;
 if (item == max_item) return new Solution(bitvector);
 // put item in knapsack
 int bit_vector1 = bitvector | (1<<item);
 // don’t put item in knapsack
 int bit_vector2 = bitvector;
 Solution s1 = spawn knapsack(bitvector1, item+1);
 Solution s2 = spawn knapsack(bitvector2, item+1);
 sync;
 if better(s1,s2) return s1
 else return s2;
}
Knapsack problem (4)

• Problems
 – If a better solution has been found, the algorithm will still look at knapsacks that are worse
 – These is no idea of a ‘global optimum’ until the very end

• Solution: maintain a global ‘best capacity’ value
Knapsack problem (5)

Solution knapsack(int bitvector, int item) {
 if (weight(bitvector) > best_found) return INF;
 best_found = min(best_found, weight(bitvector));
 if (item == max_item) return new Solution(bitvector);
 // put item in knapsack
 int bit_vector1 = bitvector | (1<<item);
 // don’t put item in knapsack
 int bit_vector2 = bitvector;

 Solution s1 = spawn knapsack(bitvector1, item+1);
 Solution s2 = spawn knapsack(bitvector2, item+1);
 sync;
 if better(s1,s2) return s1
 else return s2;
}

Where is the bug?
Dynamic programming (5)

• Problems:
 – Every processor needs concurrent read/write to the ‘cache’ of already found answers
 • Possible solutions:
 – Each processor maintains his own private cache
 – Partition cache & maintain a separate ‘lock’ for each partition
 – ‘cache’ can become very large if ALL answers are stored
 • Pushing out old return-values may help
Task Graphs (1)

- task A spawns B & C.
- task B spawns D & E.

- no incoming edges = start nodes
- no outgoing edges = end nodes
 - critical path = max start → end node.
 - critical path length = length(critical path)
- interaction graph = if data exchanges between tasks I & J, then edge between I & J.
Task Graphs (2)

- Divide & conquer: from parent to child (parameter & return value)
- Dynamic programming: from each internal node that may use or produce a cachable value
Example: cluster search (1)

- Given a number points in a 2 dimensional space, try and group spatially close points.
- Clustering is best if
 - Size of each cluster is minimal
Example: cluster search (2)

- Given a number points in a 2 dimensional space, try and group spatially close points.
- Clustering is best if
 - Size of each cluster is minimal
Example: cluster search (5)

void clusterize(point2d P[], int start, int end) {
 // make a cluster entry for pair of points
 for each point X in P
 for each point Y in P
 if X != Y
 clusters += new cluster(X,Y)
 // see if the total surface area decreases when merging
 // with another area
 for each cluster A in clusters
 for each cluster B clusters
 if A != B and surface(A)+surface(B) > surface(A+B)
 clusters -= A
 clusters += cluster(A+B)
}
Example: cluster search (6)

• Problems
 – Not recursive = not divide and conquer
Example: cluster search (7)

```c
for each i in a do
    statement(i)
int len = length(a);
foo(a, len);
------------------------------------------
void foo(Data []a, int len) {
    if (len == 1) statement(i)
    else {
        foo(a[0..len/2], len/2);
        foo(a[len/2 .. len-1], len/2);
    }
}
```
Questions

• Can each loop be rewritten to use recursion?
 – ?
 YES: each jump to start of the loop = recursive invocation

• Can each loop be rewritten as above?
 – ?
 NO: depends on data-dependencies
CILK (1)

• ANSI C extension
 – spawn call(parameters)
 – sync;
• For shared memory multiprocessors
• Translates CILK to plain C

```cilk
long parallel_fib(long n) {
    if(n < 2) return n;

    long x = spawn fib(n-1);
    long y = spawn fib(n-2);
    sync;
    return x + y;
}
```
CILK (2)

• Each CPU has a private ‘job’ stack
• Each spawn puts a descriptor on his job stack
 – The parameters of the spawned invocation
 – Where to store return value of call afterwards
• Each sync pops from his stack until stack exhausted
 – Because of divide & conquer
 • Big tasks on bottom of stack
 • Smallest tasks on top
 – Current processor picks work from top-of-the-stack
 – Others try and “steal” jobs from bottom of stack
 • “work stealing” algorithm
CILK (3)

• Who do you steal jobs from?
 – Random work stealing?
 – Hierarchical work stealing?
 – Match stealing pattern to that of network?

• When work-stealing, when work-pushing?
 – If overloaded -> push
 – If underloaded -> steal

• Work pushing:
 – Push jobs to whom?
 – Dissimination: push to closest neighbors, he will push overload jobs outwards, etc
CILK (4)

- Matrix multiplication using divide and conquer

\[c_{ik} = \sum_{j=1}^{n} a_{ij} \times b_{jk} \]
CILK (4aa)
Improving Matrix Memory Layout

Access element A[I][j] of NxN matrix using:
ptr + (N*I) + J
CILK (4ab) Improving Matrix Memory Layout

Access element A[I][j] of NxN matrix using:
ptr + (n*I) + J
CILK (4b)

\[c_{ik} = \sum_{j=1}^{n} a_{ij} \times b_{jk} \]

```c
void iter_matmul(double *A, double *B, double *C, int n) {
    int i, j, k;

    for (i = 0; i < n; i++)
        for (k = 0; k < n; k++) {
            double c = 0.0;
            for (j = 0; j < n; j++)
                c += A[i * n + j] * B[j * n + k];
            C[i * n + k] = c;
        }
}
```
CILK (4c)

Is this the same?

As this?

R.Veldema, Inf-2, WS 14
CILK (4d)

cilk void rec_matmul(double *A, double *B, double *C,
 int m, int n, int p, int ld, boolean add)
{
 if ((m + n + p) <= 64) { /* base case */
 if (add) {
 for (int i = 0; i < m; i++)
 for (int k = 0; k < p; k++) {
 double c = 0.0;
 for (int j = 0; j < n; j++)
 c += A[i * ld + j] * B[j * ld + k];
 C[i * ld + k] += c;
 }
 } else {
 for (int i = 0; i < m; i++)
 for (int k = 0; k < p; k++) {
 double c = 0.0;
 for (int j = 0; j < n; j++)
 c += A[i * ld + j] * B[j * ld + k];
 C[i * ld + k] = c;
 }
 }
 } else
 spawn_sub_matrix_computations(A,B,C,m,n,p,ld,add);
}
```c
void spawn_sub_matrix_computations(double *A, double *B, double *C,
    int m, int n, int p, int ld, boolean add) {
    if (m >= n && n >= p) {
        int m1 = m / 2;
        spawn rec_matmul(A, B, C, m1, n, p, ld, add);
        spawn rec_matmul(A + m1 * ld, B, C + m1 * ld, m - m1, n, p, ld, add);
    } else if (n >= m && n >= p) {
        int n1 = n / 2;
        spawn rec_matmul(A, B, C, m, n1, p, ld, add);
        sync;
        spawn rec_matmul(A + n1, B + n1 * ld, C, m, n - n1, p, ld, TRUE);
    } else {
        int p1 = p / 2;
        spawn rec_matmul(A, B, C, m, n, p1, ld, add);
        spawn rec_matmul(A, B + p1, C + p1, m, n, p - p1, ld, add);
    }
}
```
CILK (6)

- **Abort mechanism**
 - During search space exploration you may want to abort all branches that have become superfluous
 - Dynamic programming does not stop already running superfluous tasks, only prevents new unneeded tasks
 - One task kills
 - A sibling task
 - …and all its children
 - Where are those tasks running (other machines…?)
Cilk (7): alpha-beta search

```c
inlet void catch(int ret_sc, int ret_mv) {
    ret_sc = -ret_sc;
    if (ret_sc > bestscore) {
        bestscore = ret_sc;
        if (ret_sc >= cur.beta) {
            aborted = 1;
            abort;
        }
    }
    if (ret_sc > cur.alpha) {
        cur.alpha = ret_sc;
    }
}

cilk int search(position *prev, int depth, int update_move) {
    position cur;
    int bestscore = -INF;
    int aborted = 0;
    int score = make_move(prev, &cur, update_move);
    if (is_winning_position(score) || is_bad_position(score)) {
        return sc;
    }
    cur.alpha = -prev->beta;
    cur.beta = -prev->alpha;
    if (!aborted) 2
        for (mv=start_move; mv<=last_move; mv++) {
            catch(spawn search( &cur, depth-1, mv), mv);
            if (aborted) break;
        }
    sync; // wait for all my spawns to finish
    return bestscore;
}
```
JSR-166 (1)

- `java.util.concurrent.*`
 - Instead of extending `java.lang.Thread` extend `java.util.concurrent.FutureTask`
 - FutureTask instances are managed by `java.util.concurrent.ThreadPoolExecutor` instances (manages a number of `java.lang.Thread` instances)
JSR-166 (2)

Step 1: in class heading:
```java
class Fib extends FutureTask {
    int number; // result & FIB number this task is to compute
}
```

Step 2: in main:
```java
ThreadPoolExecutor g = new ThreadPoolExecutor();
g.execute(new Fib());
```

Step 3: in run:
```java
int n = number;
if (n <= 1) {
    // Do nothing: fib(0) = 0; fib(1) = 1
} else if (n <= sequentialThreshold) {
    number = seqFib(n);
} else {
    Fib f1 = new Fib(n - 1);
    Fib f2 = new Fib(n - 2);
    g.execute(f1); g.execute(f2);

    // Combine results:
    number = f1.get() + f2.get();
}
```
JSR-166 (3)

Conceptually:

```java
FutureExecutor.execute(FutureTask t)
    stack.push(t);

FutureExecutor.run()
    Task t = FutureTask.pop();
    new Thread(t).start();

FutureTask.get();
    while (! computed)
        wait();
```
Satin (1)

• An alternative Java extension for divide and conquer programming

• Designed for
 – Clusters of workstations
 – Clusters of clusters (aka the “computational grid”)

• Objects implementing a ‘Spawnable’ interface have their methods invoked in parallel on other machines

• All parameters to methods of ‘Spawnable’ are call by copy
 – Distributed memory machines!
interface FibInter extends satin.Spawnable {
 int fib(int n);
}

class Fib extends satin.SatinObject
 implements FibInter {
 public int fib(int n) {
 if (n<2) return n;
 long x = fib(n-1); // spawns new task
 long y = fib(n-2); // spawns new task
 sync();
 return x + y;
 }
}

public static void main(String args[]) {
 Fib f = new Fib();
 int result = f.fib(17);
 f.sync();
 System.out.println("result = " + result);
}
Satin (3)

• Implements
 – Random stealing
 • Once a machine is idle
 – try and perform “work stealing” from some other machine
 – Cluster-aware random Stealing
 • Once a machine is idle
 – Send a work request asychronously to a remote cluster
 – Try and perform “work stealing from some other machine within own cluster in parallel to work request
Example: Catalan numbers (1)

• How many ways can we place `(` and `)` pairs in an expression:
 – (A + B) + C
 – A + (B + C)

• For n + 1 factors:

\[
C_n = \binom{2n}{n} = \sum_{k=0}^{\lceil n/2 \rceil} \binom{2n-k}{n-k} + \binom{2n-k}{n-k-1}
\]
Example: Catalan numbers (2)

```python
sequential_algorithm catalan(n,k)
    if k == 1 return 1
    if (n == k*2) return catalan(n – 1, k – 1)
    return catalan(n-1, k-1) + catalan(n-1, k);
```
Example: Catalan numbers (3)

parallel_algorithm catalan(n,k)
 if k == 1 return 1
 if (n == k*2) return catalan(n – 1, k – 1)
 int a = spawn catalan(n-1, k-1);
 int b = spawn catalan(n-1, k);
 sync
 return a + b;

Question: assume a distributed machine,
where to spawn catalan(n,k) ?
Example: Catalan numbers (3)

Table2D answers = \{\{-1,-1,-1, \ldots\}, \{-1,-1,-1,\ldots\}, \ldots\};

```
parallel_dp_algorithm catalan(n,k)
    if (answers[n,k] != -1) return answers[n,k];
    if k == 1 return 1
    if (n == k*2) return catalan(n – 1, k – 1)
    int a = spawn catalan(n-1, k-1);
    int b = spawn catalan(n-1, k);
    sync
    answers[a,b] = a+b;
    return answers[a,b];
```

Question: assume a distributed machine, where to spawn catalan(n,k) ?